

УЛЬТРАЗВУКОВЫЕ ЭЛЕКТРОННЫЕ СЧЕТЧИКИ ТЕПЛОВОЙ ЭНЕРГИИ **БЕРИЛЛ СТЭУ 41**

Теплосчетчики СТЭУ 41 ультразвуковые «БЕРИЛЛ» предназначены для измерения и регистрации переданной тепловой энергии (количества теплоты), объёма теплоносителя и других параметров теплоносителя в закрытых водяных системах отопления для индивидуальных потребителей тепловой энергии.

Принцип работы теплосчётчика состоит в измерении ультразвуковым датчиком объёма воды, прошедшей через систему отопления, и разницы температур теплоносителя, измеренной парой термопреобразователей сопротивления в прямом и обратном трубопроводах. На основании полученных измерений вычислитель теплосчетчика производит вычисление тепловой энергии, отданной теплоносителем с последующим отображением результата на индикаторе вычислителя.

Имеет два исполнения с настройками для установки:

- в подающий трубопровод,
- в обратный трубопровод.

Три типоразмера с номинальным значением расхода: 0,6 м³/ч, 1,5 м³/ч, 2,5 м³/ч.

Непосредственное визуальное отображение текущей и архивной информации потребления количества теплоты (удобный ЖК-индикатор большого размера).

Архивные данные по количеству потребления, глубина архива 39 месяцев.

Для интеграции в системы учета ресурсов (АСКУЭ) имеются варианты исполнения с импульсным выходом, проводным интерфейсом M-bus или RS 485, беспроводным интерфейсом LoRaWAN. Также имеется вариант исполнения без внешнего интерфейса, только с визуальным считыванием.

Благодаря применению ультразвукового метода измерения объема теплоносителя теплосчетчик получил более широкий динамический диапазон по сравнению с механическими приборами и возможность соответствовать более высокому класс точности.

Соответствуют техническим требованиям ГОСТ Р ЕН 1434-1-2011 «Теплосчетчики» и изготавливаются по техническим условиям ТУ 26.51.53.-004-17331698-2018.

ОБЛАСТЬ ПРИМЕНЕНИЯ И ФУНКЦИИ

Приборы такого типа применяются для индивидуального учета в следующих зданиях / помещениях (при горизонтальной системе отопления):

- в многоквартирных домах;
- в учрежденческих и административных зданиях;
- в отдельных помещениях / зданиях / сооружениях.

Типовые пользователи счетчиков:

- владельцы недвижимости;
- ассоциации собственников имущества (кооперативы, ТСЖ и т.д);
- компании, специализирующиеся на техническом обслуживании зданий;
- специалисты по эксплуатации жилых комплексов,
- энергоснабжающие компании при прямом договоре с потребителем ресурсов.

Функции:

- измерение и отображение мгновенного количества тепловой энергии на основе данных по расходу теплоносителя и разницы температур;
- суммирование значений и отображение потребляемого количества теплоты за всё время эксплуатации;
- сохранение в памяти (архив) раздельного потребленного количества тепловой энергии помесячно за последние 39 месяцев;
- самоконтроль с отображением сбоев в работе;
- передача данных для внешних систем учета осуществляется посредством импульсного выхода, беспроводного интерфейса LoRaWAN, проводного интерфейса M-bus или RS 485.

СОСТАВ КОМПЛЕКТА ПОСТАВКИ ТЕПЛОСЧЕТЧИКА

Наименование	Количество, шт.
Теплосчетчик	1
Защитный колпачок	2
Принадлежности для монтажа:	
Пломбировочная проволока	3 (60 см)
Пломба	3
Прокладки	2
Руководство по эксплуатации	1
Инструкция по установке	1
Методика поверки (поставляется по дополнительному заказу)	По запросу аккредитованной лаборатории

ВИДЫ УСТАНОВОЧНЫХ КОМПЛЕКТОВ

(В КОМПЛЕКТ ПОСТАВКИ СЧЕТЧИКА ТЕПЛА НЕ ВХОДЯТ, ПОСТАВЛЯЮТСЯ ОТДЕЛЬНО)

Описание	Тип установочного набора
	CTЭ15-1
Монтажная длина 110 мм, датчик температуры прямого погружения в шаровом кране	CT∋15-0,5
	CTЭ15-min
Монтажная длина 130 мм, датчик температуры прямого погружения в шаровом кране	CTЭ20-1
	CTЭ20-0,5
	CTЭ20-min

СОСТАВ УСТАНОВОЧНЫХ КОМПЛЕКТОВ

Принадлежности	CTЭ15-1	CTЭ15-0,5	CTЭ-15- min	CTЭ20-1	CTЭ20-0,5	CTЭ-20- min
Вставка-заменитель 110 мм (¾")	1 шт.	1 шт.				
Вставка-заменитель 130 мм (1")				1 шт.	1 шт.	
Кран шаровый (1/2")	2 шт.					
Кран шаровый (¾″)				2 шт.		
Кран шаровый под термосопротивление (½")	1 шт.	1 шт.	1 шт.			1 шт.
Кран шаровый под термосопротивление (¾")				1 шт.	1 шт.	

www.i-bs.ru

ГЕХНИЧЕСКОЕ ОПИСАНИЕ

Присоединительный комплект (¾")	1 шт.	1 шт.	1 шт.			1 шт.
Присоединительный комплект (1")				1 шт.	1 шт.	
Прокладка под гайку (¾″)	2 шт.	2 шт.				
Прокладка под гайку (1")				2 шт.	2 шт.	

ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА

При заказе прибора укажите тип прибора в соответствии с данными, приведенными выше в колонках таблицы.

Например: СТЭУ 41.15-1,5-2-К1-Т1-I — теплосчетчик с диаметром условного прохода 15 мм, постоянным расходом теплоносителя 1,5 м³/ч, исполнение вычислителя 2-го типа, метрологический класс 1, с установкой в подающий трубопровод, с импульсным выходом.

CT3Y 41.15-1,5-2-K1-T1-I

внешний интерфейс: І – импульсный выход; М – M-bus шина; R – RS 485,

L – LoRaWAN, N – без внешнего интерфейса

вариант установки: Т1 – подающий трубопровод;

Т2 – обратный трубопровод

метрологический класс: 1 или 2 исполнение вычислителя: 1; 2; 3

модификация: номинальный расход 0,6; 1,5; 2,5 $m^3/4$ диаметр условного прохода: 15 - Ду 15 mm; 20 - Ду 20 mm

условный номер разработки

счетчик тепла электронный ультразвуковой

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

См. паспорт/руководство по эксплуатации

ПРИНЦИП ИЗМЕРЕНИЯ

Принцип измерения теплосчетчиком основан на измерении объема теплоносителя, его температуры в подающем (прямом) и обратном трубопроводах и вычислении по этим параметрам потребляемой тепловой энергии. Результат вычисления отображается на ЖК-индикаторе.

Температура в подающем и обратном трубопроводах измеряется платиновыми датчиками температуры (Pt1000) типа DS.

Расход теплоносителя измеряется с помощью ультразвукового датчика, расположенного в корпусе прибора.

СУММИРОВАНИЕ ЗНАЧЕНИЙ ПОТРЕБЛЯЕМОЙ ЭНЕРГИИ

Счетчик тепловой энергии рассчитан на установку в **подающий или обратный** трубопровод в зависимости от исполнения. Датчик расхода обеспечивает непрерывное измерение объёма теплоносителя и температуры в подающем и обратном трубопроводах.

Микропроцессор, входящий в состав вычислителя, на основании данных от датчика рахода и датчиков температуры определяет разность температур, и на основе теплового коэффициента вычисляет количество потребленного тепла.

ХРАНЕНИЕ ЗНАЧЕНИЙ ПОТРЕБЛЕННОЙ ЭНЕРГИИ

Значения потребляемой теплоты непрерывно суммируются нарастающим итогом.

Одновременно сохраняется раздельный учет количества потребленной тепловой энергии за каждый из 39 прошедших месяцев.

ИНДИКАЦИЯ НА ЖК-ДИСПЛЕЕ.

Показания отображаются в следующих единицах измерения:

- °C (°C) Гкал (Gkal)
- кВт (kW) • часы (h).
- кВтч (kWh) м³/ч (m³/h)

Все данные о потреблении сгруппированы в нескольких меню, каждое из которых имеет несколько пунктов:

www.i-bs.ru

ЕХНИЧЕСКОЕ ОПИСАНИЕ

1. Раздел пользователя

- суммарное кол-во потребленной тепловой энергии в кВт и Гкал;
- все символы дисплея;
- суммарное кол-во потребленной энергии охлаждения с символом **;
- текущая потребляемая мощность;
- накопленный объем теплоносителя;
- температура теплоносителя в подающем трубопроводе с символами r: °C;
- температура теплоносителя в обратном трубопроводе с символами **b: °C**;
- значение разности температур в подающем и обратном трубопроводах с символами **d: °C**;
- текущий расход теплоносителя;
- суммарное время эксплуатации с пиктограммой **h**;
- номер теплосчетчика
- диаметр условного прохода с символом **dn**.

2. Служебное меню: раздел архива, символ [I]

- системная дата сек, минута, час с символами **t l**;
- дата текущая дата месяца. текущий месяц. текущий год. с символами ${m d}$ и ${m l}$;
- предыдущие 38 месяцев с датой последнего дня месяца ддд.мм.гг с символами **d** и **l**;
- первичный адрес;
- вторичный адрес;
- подающий/обратный трубопровод символы *In / Out*;
- диаметр условного прохода с символами **dn** и **l**;
- версия ПО с символами *u*⁻ *I*.

Если при индикации любого месяца нажать и удерживать кнопку более 3 с, появится отображение суммарного количества потребленного тепла за данный месяц с символом (•••••••**kW•h**), а при кратковременном нажатии — количество потребленной энергии охлаждения за данный месяц и суммарное количество теплоносителя прошедшее через теплосчетчик за соответствующий месяц (m³).

3. Служебное меню: тестовый раздел, символ [F] (доступ ограничен)

- измеренный объём теплоносителя m^3 с символом F;
- измеренная тепловая энергия kW•h с символами 🜣 и *F*;
- измеренная энергия охлаждения kW•h с с символами ₩ и **F**;
- контрольное число с символом **F**;
- текущий расход теплоносителя m^3/h с символом F;
- температура теплоносителя в подающем трубопроводе с символами **r: °C** F;
- температура теплоносителя в обратном трубопроводе с символами **b: °C**;
- разница температур в подающем и обратном трубопроводах с символами **b: °C** F

Смена индикации параметров осуществляется при кратковременном нажатии кнопки.

4. Служебное меню: эксплуатационный раздел (доступ ограничен)

- Err 1: Батарея разряжена дд.мм.гг
- Err 2: Температура вне рабочего диапазона дд.мм.гг
- Err 3: Нет достоверности по датчику температуры дд.мм.гг

КОНСТРУКЦИЯ

Теплосчетчик	Теплосчетчик представляет собой изделие — единый теплосчетчик, состоящее из конструктивно закон-
	ченных узлов: датчика расхода, вычислителя и двух датчиков температуры.
	Принцип действия теплосчетчика состоит в обработке вычислителем измерительных сигналов, поступа-
	ющих от датчика расхода, преобразователей температуры, вычисления, отображения тепловой энергии
	и других параметров теплоносителя.

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

• Датчик расхода	Ультразвуковой расходомер измеряет расход, используя принцип разности времен прохождения ультра- звукового сигнала по потоку и против потока теплоносителя. Расходомер связан с вычислителем единой конструкцией.
	Электронный принцип измерения числа оборотов крыльчатки полностью исключает влияние на работу ту теплосчетчика магнитных полей. Измерение объема теплоносителя блокируется в случае вращения крыльчатки в обратную сторону.
	Датчик устанавливается в трубопровод при помощи фитингов с накидными гайками. На корпусе нанесена стрелка направления потока теплоносителя.
• Вычислитель	Вычислитель представляет собой микропроцессорное устройство, предназначенное для преобразования по определенному алгоритму сигналов поступающих с датчиков расхода и датчиков температуры.
	Для подсчета потребленной тепловой энергии в единицу времени (месяц, год) вычислитель имеет встроенные часы точного времени, используемые при формировании отчетов .
	Конструктивно вычислитель выполнен в виде блока, заключенного в пластмассовый корпус, который устанавливается на крышку датчика расхода.
	Накопленная информация в зависимости от исполнения теплосчетчика считывается визуально, а на вторичные приборы регистрации передается через кабель импульсами, или по M-bus шине, или RS-485, либочерез радиоканал LoRa.
• Датчики температуры	Комплект датчиков температуры — подобранная пара платиновых терморезисторов типа Pt 1000 с номинальным сопротивлением 1000 Ом при 0°С.

УСЛОВИЯ ХРАНЕНИЯ И ТРАНСПОРТИРОВКИ

Теплосчетчик подлежит транспортировке и хранению в упаковке предприятия—изготовителя. Теплосчетчик допускается транспортировать на любые расстояния любым видом транспорта.

Условия транспортирования в части воздействия климатических факторов должны соответствовать: температура воздуха от минус 40 до плюс 50°C с относительной влажностью 95 % при плюс 35°C.

Хранение теплосчетчиков в упаковке завода—изготовителя должно соответствовать температуре окружающего воздуха от плюс 5 до плюс 40°С, относительная влажность до 80 %.

РЕКОМЕНДАЦИИ ПО МОНТАЖУ

Монтаж / демонтаж прибора должен выполнять только квалифицированный специалист.

Необходимо тщательно соблюдать действующие нормы эксплуатации счетчиков тепловой энергии (требования к монтажу, уплотнению, режимам работы, оформлению документов и т.п.) При нарушении прибор может быть снят с гарантии.

При монтаже следует избегать верхних участков трубопроводов, там где существует риск завоздушивания или нахождение воздушных пузырьков в теплоностителе.

Счетчик тепловой энергии следует устанавливать в ПРЯМОЙ ИЛИ ОБРАТНЫЙ трубопровод, в зависимости от конфигурации, между двумя отсечными шаровыми кранами. Для удобства снятия показаний и технического обслуживания следует обеспечить удобный доступ к прибору.

Перед тем как приступить к монтажу счетчика, следует тщательно промыть трубопровод (для этой цели следует использовать технологическую вставку-заменитель). ОПРЕССОВКУ СИСТЕМЫ ОТОПЛЕНИЯ ЖЕЛАТЕЛЬНО ПРОВОДИТЬ ДО УСТАНОВКИ ТЕПЛОСЧЕТЧИКА!

ЗАПРЕЩАЕТСЯ ПРОВОДИТЬ ЭЛЕКТРОСВАРОЧНЫЕ РАБОТЫ НА ТРУБОПРОВОДЕ ПРИ УСТАНОВЛЕННОМ НА НЕМ ТЕПЛОВЫЧИСЛИТЕЛЕ, ЕСЛИ РАССТОЯНИЕ ДО СЧЕТЧИКА МЕНЕЕ 5 МЕТРОВ!

При монтаже обязательно установите счетчик так, чтобы стрелка на его корпусе, обозначающая направление потока, была направлена по потоку теплоносителя в трубопроводе.

Предприятие-изготовитель не принимает претензии на присоединительные комплекты и другую арматуру, которые Потребитель приобретал самостоятельно. При использовании установочного комплекта производства других компаний убедитесь в том, что все элементы отвечают установленным требованиям.

Корпус датчика расхода, два датчика температуры и соединительную арматуру следует опломбировать во избежание несанкционированного вмешательства в работу счетчика. Предприятие-изготовитель не принимает претензии при повреждении заводского пломбировочного стикера, размещенного на обратной стороне крышки вычислителя.

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

ПО теплосчетчика выполняет функции контроля за измерением объема и температуры теплоносителя, вычислением количества теплоты, архивированием и передачей измеренных и вычисленных параметров по интерфейсам передачи данных. Также ПО выполняет функции контроля для мониторинга питания теплосчетчика, таймера, регистрации ошибок.

Конструкция теплосчетчика исключает возможность несанкционированного влияния на ПО и измерительную информацию.

Уровень защиты ПО «высокий» в соответствии с Р 50.2.007-2014.

ИДЕНТИФИКАЦИОННЫЕ ДАННЫЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ТЕПЛОВЫЧИСЛИТЕЛЯ. ИСПОЛНЕНИЕ ВЫЧИСЛИТЕЛЯ 1

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	L_u
Номер версии (идентификационный номер) ПО	не ниже 3.11

ИДЕНТИФИКАЦИОННЫЕ ДАННЫЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ТЕПЛОВЫЧИСЛИТЕЛЯ. ИСПОЛНЕНИЕ ВЫЧИСЛИТЕЛЯ 2

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	u
Номер версии (идентификационный номер) ПО	не ниже А.2.3А

МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Типоразмер теплосчетчика	СТЭУ41.15- 0,6-(1,2)-К2	СТЭУ41.15- 1,5-(1,2)-К1	СТЭУ41.15- 1,5-(1,2)-К2	СТЭУ41.20- 2,5-(1,2)-К2
Диаметр условного прохода, мм	15	15	15	20
Монтажная длина, мм	110	110	110	130
Трубные соединения (впускное и выпускное), дюймы	3/4	3/4	3/4	1
Минимальный расход, q _{min} ,м³/ч	0,012	0,012	0,03	0,05
Постоянный расход, q _p , м³/ч	0,6	1,5	2,5	
Максимальный расход, q _{max} , м³/ч	1,2	3,5	3,5	5.0
Класс теплосчетчика (по ГОСТ Р ЕН 1434-1-2011)	2 1 2 2			2
Диапазон измерений температуры теплоносителя вычислителем, °C	от +3 до +90			
Минимальное значение измеряемой разности температур теплоносителя в подающем и обратном трубопроводах ($\Delta\Theta_{\min}$), К*	4			
Пределы допускаемой относительной погрешности теплосчетчика при измерении объемного расхода и объема теплоносителя во всем диапазоне расходов от q _i до q _s , %	\pm (1+0,01• $\mathbf{q}_{_{\mathrm{p}}}$ / \mathbf{q}) (кл. 1 по ГОСТ Р ЕН 1434-1-2011) \pm (2+0,02• $\mathbf{q}_{_{\mathrm{p}}}$ / \mathbf{q}) (кл. 2 по ГОСТ Р ЕН 1434-1-2011)			
Пределы допускаемой относительной погрешности вычислителя и комплекта датчиков температуры, %	$\delta_{B}t=\pm(1+4\Delta\Theta\min/\Delta\Theta)$			
Пределы суммарной допускаемой относительной погрешности теплосчетчика при измерении тепловой энергии, %	\pm (2+0,01•qp /q+4 $\Delta\Theta$ min / $\Delta\Theta$) (кл. 1 по ГОСТ Р ЕН 1434-1) $^{1)}$ \pm (3+0,02•qp /q+4 $\Delta\Theta$ min / $\Delta\Theta$) (кл. 2 по ГОСТ Р ЕН 1434-1) $^{2)}$			
Пределы допускаемой относительной погрешности измерений времени, %	± 0,05			
Максимально допустимое рабочее давление, МПа	1,6			
Потеря давления при номинальном значении расхода q _p , МПа	0,025			

 $^{^{1)}}$ При применении датчиков расхода с пределами допускаемых значений относительной погрешности не более $\pm (1+0.01$ qp /q)

Примечание. Обозначения в таблице: q- измеренное значение расхода теплоносителя $m^3/4$; $\Delta\Theta-$ измеренное значение разности температур прямого и обратного потоков теплоносителя

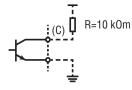
²/При применении датчиков расхода с пределами допускаемых значений относительной погрешности не более ±(2+0,02qp /q)

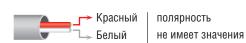
^{*} Обозначение в соответствии с ГОСТ Р ЕН 1434-1-2011.

M-bus

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

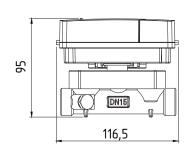

Типоразмер теплосчетчика	СТЭУ41.15-	СТЭУ41.15-	СТЭУ41.15-	СТЭУ41.20-		
ингоразмер геплосчетчика	0,6-(1,2)-K2	1,5-(1,2)-K1	1,5-(1,2)-K2	2,5-(1,2)-K2		
Электропитание — от литиевой батареи номинальным напряжением, В	3,6					
Тип дисплея	LCD	LCD, 8 цифр высотой 6 мм + пиктограммы				
Условия эксплуатации по ГОСТ Р ЕН 1434-1-2011:		класс исп	олнения А			
— температура окружающей среды, °С		от +5 ,	до +55			
— относительная влажность воздуха при +25 °C, не более, %	93					
— атмосферное давление, кПа	от 90 до 110					
Срок службы батареи, лет, не менее	6					
Установочный размер мм		110		130		
Размер резьбы, дюйм"		3/4		1		
Габаритные размеры, мм, не более:						
— высота	80 80			80		
— ширина	80 80			80		
– длина	120 130			130		
Масса, кг, не более	0,75 0,85		0,85	1,2		
Наработка на отказ, ч, не менее	65000					
Средний срок службы, лет, не менее	12					

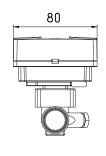

ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

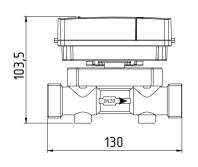
Гарантийный срок эксплуатации — 48 месяцев со дня изготовления теплосчетчика.

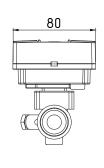
СХЕМЫ ПОДКЛЮЧЕНИЯ ВЫХОДОВ

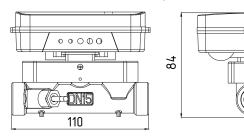
<u>Импульс</u>

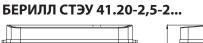


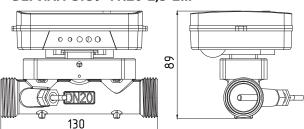

RS485


ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ

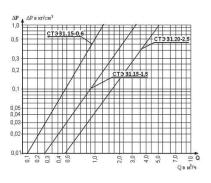

БЕРИЛЛ СТЭУ41.15-1,5-1...


БЕРИЛЛ СТЭУ 41.20-2,5-1...




ТЕХНИЧЕСКОЕ ОПИСАНИЕ

БЕРИЛЛ СТЭУ41.15-1,5-2...



email: info@i-bs.ru

ДИАГРАММА ПОТЕРИ ДАВЛЕНИЯ В ЗАВИСИМОСТИ ОТ РАСХОДА

СЕРТИФИКАТЫ

Свидетельство об утверждении типа средств измерений ОС.С.32.004.А № 75394 Зарегистрирован в Государственном реестре средств измерений под № 76456-19